Меню Рубрики

Embedded linux операционная система

Что такое Embedded Linux?

в Linux 11.09.2019 0 156 Просмотров

Термин «Embedded – встроенный Linux®» может использоваться для описания любого варианта операционной системы, работающей на встроенной компьютерной системе – специализированного устройства или платформы, интегрированных в более крупный общий продукт, такой как устройство бытовой электроники или часть оборудования. Модульная архитектура ядра Linux® наряду с поддержкой широкого спектра микропроцессоров и других типов оборудования сделала систему популярной в области вычислений. Но в некоторых сценариях Linux® может страдать от снижения производительности, поскольку ей требуется дополнительное программное обеспечение для работы в качестве операционной системы реального времени (RTOS), что является требованием для некоторых встроенных систем.
Несмотря на это, для встроенных систем используется множество пользовательских дистрибутивов Linux® – от мобильных телефонов до оборудования для тестирования авионики.

Встроенный компьютер отличается от персонального компьютера (ПК) тем, что встроенная система спроектирована или сконструирована для одной или нескольких конкретных целей, в то время как ПК предназначены для широкого спектра функций. Встроенный компьютер может быть спроектирован с минимальной производительностью, необходимой для достижения его конкретных целей, что обеспечивает лёгкую и высокоэффективную компьютерную платформу. Категория охватывает широкий спектр вычислительных устройств, от бытовой электроники до оборудования авионики, роверов и космических кораблей, которые исследуют солнечную систему. Но, как и любой компьютер, аппаратное обеспечение встроенной системы бесполезно без программной платформы, и во многих случаях выбранная программная платформа представляет собой некий вид встроенной Linux®.

Linux® доказала свою популярность во многих областях встраиваемых вычислений благодаря высокому уровню настройки и гибкости, а также разнообразной аппаратной поддержке. Ядро Linux® имеет модульную архитектуру, что означает, что разработчик или инженер может выбирать драйверы и программное обеспечение высокого уровня, необходимое для конкретной системы. Поддержка множества различных микропроцессорных архитектур также является важным преимуществом, предлагаемой встроенной Linux®, поскольку во встроенных системах может использоваться микропроцессор, который сильно отличается от тех, которые имеются в ПК. Как проект программного обеспечения с открытым исходным кодом, Linux® также может использоваться без ограничений и лицензионных отчислений, которые могут присутствовать в коммерческих предложениях.

Встраиваемые системы часто требуют операционной системы реального времени – операционной системы, способной реагировать на события в течение очень короткого периода времени. Поскольку ядро ​​Linux® не было разработано с учётом производительности в режиме реального времени, для обеспечения этой функциональности, поверх ядра необходимо запустить дополнительное программное обеспечение. Это является потенциальным недостатком использования встроенной Linux®, поскольку это дополнительное программное обеспечение потребляет больше ресурсов.

Некоторые версии встроенной Linux® могут быть построены практически с нуля, в то время как другие являются слегка изменёнными версиями существующих дистрибутивов. Как коммерческие, так и некоммерческие организации предлагают свои собственные готовые дистрибутивы, предназначенные для производителей и дизайнерских фирм. Например, мобильные телефоны и медиаплееры обычно используют готовые варианты встроенной Linux®. Компьютерные системы или сетевые устройства могут использовать только слегка изменённую версию дистрибутива Linux® для настольных компьютеров.

В областях с высокими требованиями в режиме реального времени или требованиями к производительности конечный пользователь часто активно участвует в разработке системы. Например, Национальное управление по аэронавтике и исследованию космического пространства (НАСА) получает программное обеспечение Linux® от сторонних поставщиков, но устанавливает руководящие указания для поставщиков. Другие организации, такие как компании, производящие оборудование для тестирования авионики, могут разработать собственный вариант встроенной Linux®.

Источник

Embeddedsoft.ru

Плюсы и минусы операционной системы

(Linux Embedded)

Что дает операционная система?

Большую часть (в разумных пределах) задач встраиваемых систем можно решить без операционной системы (обычная “железяка” cortex M4 или ARM7 могут работать с сетью по каналу ethernet, иметь свой веб-сервер на борту, флеш-память, графический дисплей). Операционная система позволяет создавать сложные системы сбора данных, использовать множество утилит и программ, написанных для данной системы (flash-player, анимация, сетевые утилиты ftp, ssh и прочие).
Архитектура программного обеспечения в операционных системах обычно сильно отличается от архитектуры встраиваемой системы с единым standalone-приложением, включающим в себя работу с драйверами и алгоритмы работы системы в целом. Операционная система подразумевает многопоточность и многозадачность, возможность запуска нескольких отдельных программ одновременно.

Стоит учесть, что если в операционной системе нет каких-то драйверов и BSP не полная, то задача работы с железом усложняется в разы, т.к. разработчик должен понимать и основы работы ОС, драйверов, в то же время обладать опытом работы с железом на низком уровне.

С другой стороны, надо понимать что создавая встраиваемую систему задача не сделать полнофункциональный настольный компьютер, а лишь “промежуточное звено”, которое даже может не иметь дисплея вовсе. Применение операционной системы не будет разумным в случае, если необходимо просто “помигать светодиодом” или даже просто выводить на экран статическое изображение согласно данным, приходящим по единственному интерфейсу rs-232.

Чаще всего используют linux, хотя в зависимости от задачи возможно использование и других ОС (для задач реального времени и низкопроизводительных микроконтроллеров используют FreeRTOS, QNX, Windows CE).

Почему именно Linux?

На данный момент Linux хорошо поддерживает различные архитектуры. Linux бесплатный, что важно когда создаются серийные устройства. У Linux большинство исходных кодов бесплатны, что не так важно для обычного настольного ПК, но становится часто важным для разработчиков встраиваемых систем, т.к. исходные коды позволяют собрать программное обеспечение под свою платформу. Не у всех есть понимание того факта, что программы собранные под настольный компьютер (архитектура x86) не будут запускаться на другой архитектуре (ARM, AVR32).

На каком “железе” стоит создавать встраиваемую систему?

Сейчас чаще всего используют ARM (cortex, tdmi), также популярные MIPS, AVR32 и прочие. ARM имеет хорошую поддержку в плане готового программного обеспечения и дистрибутивов, имеет хороший показатель производительности/энергопотребления. Многие программы портированы на ARM-архитектуру.

Как прошивать получившиеся блоки?

Многие разработчики standalone-приложений привыкли создавать один проект в какой-нибудь среде разработки (IAR, Keil, ImageCraft и прочие), настраивать проект под определенный “камень” и прошивать при помощи JTAG или UART. Со встраиваемыми системами конечно намного больше возни для разработчика. Многие ОС загружаются при помощи загрузчика, который стоит и прошивать как обычное приложение. Дальше (как правило при помощи ethernet, реже RS-232) при помощи загрузчика из консоли загружается сама операционная система. Процесс загрузки Linux, к примеру, описан на многих интернет-ресурсах. Стоит отметить, что когда система готова и отлажена, возможно считать образ получившейся системы (фактически всю флеш-память ОС) и на производстве прошивать целиком всю флеш-память.

Источник

Сборка Embedded Linux от Yocto для QEMU x86 и первое приложение к нему

Эта статья — быстрый старт с картинками для тех, кому нужно собрать Embedded Linux с помощью Yocto.
Если вы собрались собирать Embedded Linux для специфичных аппаратных средств, например, для SoC на FPGA, то, наверное, как и я столкнётесь с проектом Yocto.

Yocto — проект, объединяющий

  • инструментарий разработчика;
  • систему сборки;
  • набор программных интерфейсов;
  • коллекцию мета-пакетов, расширяющих возможности платформы;
  • плагины для Eclipse и Anjuta.

Я постарался описать процесс так, чтобы вам можно было меньше тратить времени на проблемы с настройкой и подготовкой и поскорее приступить к творчеству.

Сборка образа Linux

Основа для сборки — статья
«Yocto Project Quick Start».
Собирать буду в папке

Небольшое отступление:
Запустив терминал, все команды выполняйте в нём, потому что в ходе работы создаются и используются переменные среды. Если закрыли терминал и открыли новый, то заходите в

и придётся повторять некоторые команды. Например,

создаю репозиторий git

теперь текущая директория

теперь, согласно терминам Yocto, получилось
Source Directory — «poky»
local working area (local branch) — dizzy
Первым делом выполняется

Этой командой настраивается окружение оболочки, создается начальный изменяемый набор файлов конфигурации и осуществляется взаимодействие с окружением выполнения системы BitBake путем использования файла сценария, позволяющего Poky установить, выполняются ли минимальные системные требования. Результат выполнения команды сообщит или о проблемах, например, недостающих пакетах, или о возможности продолжить редактированием файла conf/local.conf.

Здесь следует указать число нитей, которое будет запускать средство сборки bitbake. Чтобы максимально использовать вычислительные возможности, число нитей должно соответствовать числу ядер процессора. Я указал на 1 меньше, чтобы компьютером во время сборки удобнее было пользоваться.
Так же я добавил дополнительные возможности, полезные для разработки.
Так как собираем для стандартной QEMU x86, то остальное можно не изменять.

Далее можно выбрать “рецепт” — вариант сборки со своим набором библиотек, утилит, создаваемых файлов, образов и т.п.
Список рецептов с их краткими описаниями можно посмотреть здесь:
рецепты openembedded-core
пролистайте до рецептов, начинающихся с core-…
Не советую собирать core-image-minimal для ознакомления. Там нет ssh и других удобных для отладки инструментов.
Я выбрал core-image-sato. Это сборка с GUI SATO

Будьте готовы, что ждать завершения сборки придётся, возможно, от 3 часов до 3 и более дней. В счастью, процесс можно приостановить и возобновить.
Чтобы приостановить, нажмите + один (!) раз и подождите, когда завершатся все начатые операции. Иначе, возможно, появятся ошибочки и придётся переделывать. Чтобы возобновить, повторите

Если закрыли терминал, то в новом терминале перед сборкой придётся повторить установку переменных среды:

По завершении сборки можно проверить, что получилось, запустив эмулятор QEMU

Появится окно терминала xterm, там надо будет ввести пароль root хоста для создания интерфейса tap. Там же можно увидеть IP host-машины на tap интерфейсе и IP эмулируемой машины. У меня 192.168.7.1 и 192.168.7.2 соответственно.
Затем, если собран SATO должно появится окно графического интерфейса:

Если запущенный эмулятор мешает, пока его можно закрыть. Полистайте стрелочками в верхней части GUI до появления соответствующей иконки выключения или введите poweroff через терминал SATO или по ssh. Про ssh будет позже.
Не закрывайте QEMU крестиком на главном окошке эмулятора. Закрывайте штатными средствами эмулируемой машины. Иначе у вас в системе от QEMU останутся интерфейсы ethX, tapX, virbrX, которые придётся будет ifconfig… ifdown, или как это делается на вашей ОС. Или каждый раз при запуске QEMU будут новые IP хоста и QEMU, что неудобно.

Средства разработки

Используется Eclipse IDE for C/C++ Developers, версия Luna. В этой сборке имеются плагины CDT, GNU ARM и некоторые другие полезные для кросс-компиляции и разработки встроенного ПО плагины.
Можно скачать отсюда:
Eclipse Luna SR2.

Будем собирать приложения Hello, world!

Eclipse, Cross GCC

Сначала простой путь, соберём обычными средствами Eclipse: CDT + GNU ARM
Если этих плагинов в вашем Eclipse ещё нет, то добавьте плагин CDT из стандартного репозитория Eclipse и отсюда GNU ARM Plugin for Eclipse GNU ARM C/C++ Cross Compiler и что ещё захочется.

Создаём новый проект C++:
Меню Eclipse File->New->Project…->C/C++->C++ Project
Нужно выбрать
Project type: Executable->Hello World C++ Project
Toolchains: Cross GCC

заполните поле Author
Теперь самое важное, что касается системы сборки:
Cross compiller prefix: i586-poky-linux-
Cross compiler path: /home/. /My_Designs/Poky/poky/build/tmp/sysroots/x86_64-linux/usr/bin/i586-poky-linux
Компилируем проект
Project->Build Project
Должен появиться исполняемый файл
Так как компилировали для QEMU x86 Linux, то должен запуститься и на вашей host машине, если, конечно, вы работаете на x86 Linux или совместимой с ней. У меня запустилось на IA64 Ubuntu.
Теперь, если успели закрыть QEMU, то запустите опять

Появится окно терминала xterm, надо будет ввести пароль root для создания tap интерфейса.

Как видно, у меня IP host-машины 192.168.7.1, IP qemu 192.168.7.2
Затем появится окно QEMU с графическим интерфейсом
Можно подсоединиться к QEMU через ssh и sftp. Первый полезен для запуска программы, второй — для отправки этой программы на эмулируемую машину.
Файл я отправлял с помощью файлового менеджера Krusader. В Windows можно использовать FileZilla или другими.
В Krusader я выбрал Tools->New Net Connection…, в диалоговом окне нужно выбрать sftp://, ввести IP и Username: root

В домашнюю папку на QEMU я скопировал исполняемый файл hello_cross_gcc_02 из папки Debug проекта
Далее можно открыть терминал в графическом интерфейсе QEMU и запустить программу на выполнение оттуда. Мне более удобным показалось соединиться через ssh. В окне терминала host-машины запускаем ssh

и запускаем недавно скопированный исполняемый файл:

Должно получиться
Hello World!

Сборка в ADT

Подготовка Eclipse

Делалось на основе этого: Yocto — Настройка Eclipse
В Eclipse нужны плагины из стандартной комплектации:
Linux Tools

  • LTTng — Linux Tracing Toolkit

Mobile and Device Development

  • C/C++ Remote Launch
  • Remote System Explorer End-user Runtime
  • Remote System Explorer User Actions
  • Target Management Terminal
  • TCF Remote System Explorer add-in
  • TCF Target Explorer

Programming Languages

  • Autotools Support for CDT
  • C/C++ Development Tools

И нужно добавить плагин от Yocto. Скачать можно отсюда: Yocto Plugin for Eclipse

Подготовка сборки

Для организации взаимодействия с IDE и средствами разработки, предусмотрены скрипты:

для запуска QEMU плагином Yocto нужен rpcbind

нужно отредактировать файл /etc/default/rpcbind

нужно распаковать root filesystem в ту папку в sysroots, где лежит файловая система эмулируемой машины. В нашем случае qemux86:

Настройка Yocto ADT в Eclipse

В Eclipse меню Windows->Preferences, Yocto Project ADT
Cross Compiler Options
Build system derived toolchain
Toolchain Root Location:
/home/. /Poky/poky/build/
Sysroot Location:
/home/. /Poky/poky/build/tmp/sysroots/qemux86
Target Architecture: i586-poky-linux
Target Options:
QEMU
Kernel: /home/. /Poky/poky/build/tmp/deploy/images/qemux86/bzImage-qemux86.bin

Проект Hello, World! в Eclipse c Yocto ADT

Создаём новый проект
New Project->C++ Project
Project name: hello_qemu_cmake_04
Project type: Yocto Project ADT CMake Project->Hello World C++ CMake Project

Next, Next, Finish
Build project
В папке проекта -> Debug должен получиться hello_qemu_cmake_04
Теперь можно запустить приложение так же как это было с проектом, созданным через Cross GCC за исключением того, что QEMU запускается теперь в Eclipse через меню
Run->External Tools->qemu_i586-poky-linux

Запуск и отладка из IDE Eclipse

Теперь настроим Eclipse так, чтобы можно было запускать и отлаживать приложение прямо из IDE.
Инструкция взята отсюда:
Загрузка и отладка приложения средствами ADT в Eclipse
Для удобства перед настройкой удалённая машина должна быть запущена (Run->External Tools->qemu_i586-poky-linux, как в предыдущем разделе).
Для настройки отладки выбираем в меню Eclipse
Run -> Debug Configurations…
В списке слева нужно отыскать “C/C++ Remote Application”, там должен быть пункт с названием нашего проекта и виртуальной машины. У меня это “hello_qemu_cmake_04_gdb_i586-poky-linux”. Надо его выбрать.
В руководстве от Yocto предлагается указать Remote Absolute File Path for C/C++Application. Но сейчас не самое лучшее время для этого. Удобнее будет сначала настроить связь с удалённой машиной.
А пока в правой области выбираем вкладку Debugger, здесь надо в выпадающем списке Debugger выбрать remote gdb/mi. У меня это единственный элемент списка, но его всё равно нужно выбрать. При этом заполняться некоторые другие поля формы.
Debug Configurations – Debugger”/>
Возвращаемся на вкладку Main и создаём соединение.
В разделе Connection выбираем New…. В окне New Connection выбираем TCF. У меня их два. Я не знаю, зачем второй, но выбор первого точно приводит к положительному результату.

Debug Configurations – Main->New Connection”/>

В поле Host name вписываем IP машины в QEMU. Поле Connection name можно оставить заполненным IP. , … Чтобы меньше было возни позже, здесь же можно указать login при соединении. В разделе Connection нажмите Edit… и заполните Default User ID. Логин root.

Debug Configurations – Main->Edit – Properties”/>
На вкладке Main выбираем только что созданное соединение.
Теперь указываем путь к файлу и имя файла, с которым Eclipse будет загружать отлаживаемое приложение на удалённую машину.
Если QEMU запущен, то можно нажать Browse… и, если с соединением всё в порядке, можно будет посмотреть файловую систему удалённой машины и выбрать место, куда загружать приложение. У вас не обязательно будет такая же картинка, как на скриншоте снизу. Но вот что важно: нужно указать файл. Если вы собираетесь указать папку, в которой нет файла с тем именем, с которым хотите загружать исполняемый файл, то в этим окном вы не ограничитесь. Нажмите и допишите имя файла в окне Debug Configurations.

Debug Configurations – Main->Select remote application file”/>

Итог должен получиться примерно такой:

Debug Configurations – Main”/>

Теперь можно нажать .

У меня в окне консоли Eclipse “Remote Shell” было так:

Затем приглашение переключиться в перспективу Debug. Есть смысл согласиться.
Отладчик остановился на строке

Жмём Step Over (F6)
В терминале

Теперь можно писать программу. Пока для QEMU x86.

Источник


Adblock
detector